Abstract

ABSTRACT Studying the thermodynamic properties of hydrogen impurity in low-dimensional nanostructures under high-pressure environment is crucial for understanding the optical property and thermal excitation behaviour of semiconductor material. Here, we extensively explore the effect of pressure on thermodynamic properties, specifically, the average energy, free energy, entropy, and heat capacity of one-dimensional (1-D) hydrogenic impurity in GaAs semiconductor quantum well. Our findings reveal some novel phenomenon in the thermodynamic properties of hydrogenic impurity as pressure increases in the GaAs quantum well. Remarkably, at a constant temperature, both the average energy and free energy of hydrogenic impurity decrease as pressure rises, while entropy increases with increasing pressure. Intriguingly, the heat capacity shows distinct behaviour with varying pressure for different sizes of the quantum well. For very small size of the quantum well, the heat capacity increases with increasing pressure. However, for larger size of the quantum wells, the variation of heat capacity with pressure becomes irregular, showing a changeover from an increase to a decrease in response to increasing pressure. This research presents a pioneering method that employs pressure as a versatile tool for modulating the thermodynamic properties of hydrogenic impurity states in the nanostructures, and has some guidance for the preparation and synthesis of semiconductor devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call