Abstract
The effects of the variation in the Prandtl number on turbulence in a stably-stratified fluid is investigated by direct numerical simulation. The results of simulations are presented of the homogeneous decay of turbulence for a given initial Froude number and three different initial Reynolds numbers of increasing values. For each of these cases results for two different Prandtl numbers, 1 and 7, are shown. Various statistics are put forward, including kinetic and potential energy decay rates, kinetic and potential energy dissipation rates, buoyancy fluxes, energy spectra, and statistics conditioned on the local value of the vertical density gradient. It is found that the effect of increasing the Prandtl number is to increase the kinetic energy dissipation rate, while decreasing the potential energy dissipation rate. There is a notable transfer of potential to kinetic energy for the higher Prandtl number case. Finally there is evidence, based upon the analysis of vertical planes and statistics conditional on the local density gradient, that most irreversible mixing of both density and momentum occurs in regions of stronger static stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have