Abstract

Different shapes (membranes and particles) and concentrations (1 % (w/w) and 2 % (w/w)) of polyvinyl chloride (PVC) microplastics (MPs) were investigated to determine their impact on the soil environment. The incorporation of MPs can disrupt soil macroaggregates. Compared with 1 % (w/w) MPs, 2 % MPs resulted in a significant increase in soil organic carbon content. MP particles significantly increased soil CO2 emissions, and CH4 emissions were enhanced by both membrane and particle MPs at high concentrations. Microplastics can alter the abundance of Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteriota, and Firmicutes at the phylum level, and Nocardioides, Rhodococcus and Bacillus at the genus level. MP particles had a more significant impact on soil bacterial communities than MP membranes. The relative abundances of genes involved in the C, N, and P cycles were detected by qPCR, and more remarkable changes were observed in MP membrane treatments. The relative abundance of Vicinamibacteraceae and Vicinamibacterales exhibited a positive correlation with most C/N/P cycle-related genes, whereas Pseudarthrobacter and Nocardioides demonstrated a negative correlation. This study highlights that the influence of MPs on soil parameters is mediated by soil microorganisms, providing insight into the effects of MPs on the soil microenvironment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.