Abstract
The ongoing search for environmentally friendlier alternative to the organic solvents used in chemical processes has led to the development of technologies based on supercritical carbon dioxide (scCO2), which is non-flammable, non-toxic and relatively inert fluid. Polymer chemistry does not escape this trend. Fluoropolymers prepared in scCO2 have many special properties, which are different from fluoropolymers that use water as the reaction medium, this paper studies the effect of polymerization temperature on polyvinyl fluoride polymerization in supercritical carbon dioxide. The results show that as the polymerization temperature increases, the intrinsic viscosity and shear viscosity of the polymer gradually decreases; at the same time, the increasing of polymerization temperature leads to higher proportion of irregular structure of the polymer, which causes lower melting point and lower crystallinity, and the film prepared by the resin also exhibits a higher visible light transmittance. The above results show that the resin polymerized in supercritical carbon dioxide can impart better performance to conventional polymerization, which expands the potential application fields of the resin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.