Abstract

An atmospheric pressure air microwave plasma torch is employed to assist methane diffusion combustions using a combination of a combustor and burner. Experimentally, the effect of the air microwave plasma on combustion is investigated with respect to the flame morphology and the variation of gas components in the exhaust with the fuel equivalence ratio φ or the methane flow rate by comparing plasma-assisted combustion (PAC) and natural combustion (NC) without plasma application. The combustion degree of CH4 in PACs is found to be much enhanced in rich fuel combustion than in NC in both types of burners, which is measured by Fourier transformation infrared spectrometer (FTIR). In PACs, with the use of an air microwave plasma torch, the radicals originating from excitation, ionization, and dissociation of N2 and O2 and the high gas temperature induced in the plasma discharge play an important role in assisting the combustion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call