Abstract

Pulse labelling experiments provide a common tool to study short-term processes in the plant–soil system and investigate below-ground carbon allocation as well as the coupling of soil CO2 efflux to photosynthesis. During the first hours after pulse labelling, the measured isotopic signal of soil CO2 efflux is a combination of both physical tracer diffusion into and out of the soil as well as biological tracer release via root and microbial respiration. Neglecting physical back-diffusion can lead to misinterpretation regarding time lags between photosynthesis and soil CO2 efflux in grassland or any ecosystem type where the above-ground plant parts cannot be labelled in gas-tight chambers separated from the soil. We studied the effects of physical 13CO2 tracer back-diffusion in pulse labelling experiments in grassland, focusing on the isotopic signature of soil CO2 efflux. Having accounted for back-diffusion, the estimated time lag for first tracer appearance in soil CO2 efflux changed from 0 to 1.81±0.56 h (mean±SD) and the time lag for maximum tracer appearance from 2.67±0.39 to 9.63±3.32 h (mean±SD). Thus, time lags were considerably longer when physical tracer diffusion was considered. Using these time lags after accounting for physical back-diffusion, high nocturnal soil CO2 efflux rates could be related to daytime rates of gross primary productivity (R2=0.84). Moreover, pronounced diurnal patterns in the δ13C of soil CO2 efflux were found during the decline of the tracer over 3 weeks. Possible mechanisms include diurnal changes in the relative contributions of autotrophic and heterotrophic soil respiration as well as their respective δ13C values. Thus, after accounting for physical back-diffusion, we were able to quantify biological time lags in the coupling of photosynthesis and soil CO2 efflux in grassland at the diurnal time scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call