Abstract

Land-use change often markedly alters soil carbon (C) dynamics such as soil surface CO2 efflux. This study aims to test the hypotheses that converting paddy fields to bamboo stands would markedly reduce soil CO2 efflux and their temperature sensitivity (change of soil CO2 efflux rate by increasing 10 °C of temperature), and change the relationship between soil CO2 efflux and other environmental factors. A 12-month field study was conducted to measure the seasonal and diurnal soil CO2 effluxes in three adjacent paddy field-bamboo forest pairs with the automated soil CO2 flux system (LI-8100). Results showed that soil CO2 effluxes from both of the two land-uses had distinct seasonal patterns, and were reduced from 45.4 to 34.7 t CO2 ha−1 yr−1 in cumulative CO2 emissions when paddy fields were converted to bamboo stands. About 80% of the variation in soil respiration in the bamboo stands was explained by soil temperature; however, a positive relationship between soil CO2 efflux and soil temperature in the paddy field was observed only when the soil was not submerged under water, indicating that soil water saturation in the paddy fields altered the soil CO2 efflux–temperature relationship. A negative relationship (P < 0.01) between soil CO2 efflux and soil moisture was observed in the paddy fields, while no such relationship was observed in the bamboo stands. The apparent temperature sensitivity of soil respiration (Q10) was dependent on the depth of the soil temperature measurement and was increased by converting paddy fields to bamboo stands, rejecting the hypothesis. In Lei bamboo stands, the R2 for the soil respiration-temperature regression was higher using seasonal and diurnal CO2 efflux data together than using the seasonal data alone. We conclude that the conversion of paddy fields to Lei bamboo stands decreased the annual soil CO2 efflux but increased its temperature sensitivity, and altered the relationship between soil respiration and soil moisture. When calculating the Q10, the soil temperature measurement depth and data with diurnal timescale should be taken into account. If such land-use conversion effects are confirmed over the subtropical region in China in future research, this land-use conversion could increase C sequestration in the ecosystem and help mitigate climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call