Abstract
Extensive localized or pitting corrosion of copper pipes used in household drinking water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water chemistry has been recognized as the cause of some community-wide copper pinhole leak outbreaks. A large drinking water system in Florida recently switched from pH adjustment and orthophosphate addition to a blended ortho-polyphosphate chemical to address this problem. The objective of this study was to examine the impact of phosphates on the morphology and elemental composition of the interior surface of failed copper pipes removed from homes in the community. Scanning electron microscopy (SEM) and energy dispersive spectroscopy analysis of pipe surfaces revealed the build-up of phosphorus over time. Phosphorus was most greatly concentrated over areas of localized corrosion attack. Examination of the corrosion by-product mounds that covered corroding pits showed that phosphorus had migrated to the region adjacent to the copper pipe wall. Distinct copper–phosphorus solids were identified under SEM magnification; however, no crystalline copper–phosphate compound was identified by x-ray diffraction analysis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have