Abstract

Penicillium bilaii may enhance P availability to plants, since it has been shown to increase plant growth and P uptake. There is currently increasing interest in using microorganisms to promote P mobilisation from organic P sources. An investigation was conducted to determine the effects of P. bilaii on P uptake and growth of wheat in the presence and absence of sewage sludge. Two soils differing in P contents and pH were used, as it was hypothesised that these affect the efficiency of P mobilisation. A pot experiment, in which wheat was grown for 35 days in a moderately acidic soil of low P status and a calcareous soil of moderate P status, was conducted. A full factorial design was used with two non-sterilised soils, three amendments [control, sewage sludge and triple superphosphate (TSP)] and two P. bilaii treatments (with/without). Shoot and root length, biomass and nutrient contents were analysed in plant, whereas soil samples were analysed for water-extractable P and soil pH. The shoot length and root biomass of wheat were significantly higher when sewage sludge was applied in combination with P. bilaii seed inoculation, in the moderately acidic soil. In contrast, shoot length and biomass and root biomass were higher with P. bilaii compared to the control, but no synergistic effects of P. bilaii and the organic P source were observed in the calcareous soil. A systematic, but not significant increase in total P uptake was found for all treatments inoculated with P. bilaii and for both soils, with the control of the low fertility moderately acidic soil being a notable exception. Sewage sludge was seen to be an efficient P source, on par with TSP in the moderately acidic soil. In the calcareous soil, the P. bilaii treatments without added P fertilisers had the greatest effect, with both root and shoot biomass increasing significantly.

Highlights

  • Penicillium bilaii may enhance P availability to plants, since it has been shown to increase plant growth and P uptake

  • For plants grown in moderately acidic soil, 10 days after sowing (DAS) the shoot length was significantly higher in the sewage sludge-amended soil with P. bilaii (SSPba) compared to all other treatments (Table 1)

  • For plants grown in calcareous soil at 22 DAS the shoot length was significantly higher in wheat treated with P. bilaii (CPb-c) compared to the non-inoculated control (C-c), in the majority of sampling

Read more

Summary

Introduction

Penicillium bilaii may enhance P availability to plants, since it has been shown to increase plant growth and P uptake. An investigation was conducted to determine the effects of P. bilaii on P uptake and growth of wheat in the presence and absence of sewage sludge. An alternative to mineral P fertilisers is the waste product sewage sludge, which represents an important P source with around 2–4 % of P depending on the wastewater source and the treatment methods [3], around 70–90 % of the total P is inorganic P and considered potentially equivalent to inorganic fertilisers [4, 5]. Depending on the chemicals used to precipitate P and the amount used in the wastewater treatment facilities, the immediate availability of P to plants from sewage sludge can be very different [6]. Specific soil properties, such as soil pH, soil P absorption capacity or P content, can influence plant P availability in relation to sludge [7,8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call