Abstract
The purpose of this study was to investigate the effects of different mesh sizes on the recovery of root length and biomass and to determine whether the degree of recovery was influenced by plant species and sample location. Sieves of 2.0, 1.0, 0.5 and 0.25 mm (4.0, 1.0, 0.25 and 0.06 mm2) mesh sizes were used to recover and measure the root length and biomass of Zea mays L. (maize) at 0–15 cm and 30–45 cm depths and of Grevillea robusta A. Cunn. ex R. Br. (grevillea) at the same depths 1.0 m and 4.5 m from a line of grevillea trees. At 0–15 cm, the coarser sieves (sum collected with 2.0 and 1.0 mm sieves) recovered approximately 80% of the total root biomass measured, but only 60% of the root length. The proportion of total maize root length and biomass recovered by the coarser sieves decreased with soil depth. The proportion of total grevillea root length recovered by the coarser sieves was similar at the two soil depths, but increased slightly with distance from the tree line. The ≥ 0.5 mm sieves recovered between 93 and 96% of grevillea and maize root biomass and between 73 and 98% of their root length, depending on the sample location. Roots passing through the 0.5 mm sieve, but recovered by the 0.25 mm sieve were about 20% of total maize root length and grevillea root length at 1.0 m from the tree line but < 5% of the total grevillea root length at 4.5 m from the tree. Roots passing through the 0.5 mm sieve but recovered by the 0.25 mm sieve contributed only slightly to root biomass. Although the ≥ 0.5 mm sieves provided adequate measurements of root biomass, the ≥ 0.25 mm sieves were required for accurate measurement of fine root length. There was no universal correction for root length and biomass underestimation when large sieve sizes were used because the proportions of length and biomass recovered depended on the plant species and on soil depth and distance from the plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.