Abstract
Using a five-bar linkage model of the leg/bicycle system in conjunction with experimental kinematic and pedal force data, the inverse dynamics problem is solved to yield the intersegmental moments. Among the input data that affect the problem solution is the height of the pedal platform. This variable is isolated and its effects on the total joint moments are studied as it assumes values over a ±4-cm range. Platform height variation affects the total joint moment peak values by up to 13%. Relying on a cost function derived from the hip and knee moments, it is found that the platform height that minimizes the cost function is +2 cm. The sensitivity of the cost function to the platform height variable is low; over the variable range the cost function increases 2% above the minimum. These results hold for a pedaling rate of 90 rpm. As pedaling rate is varied above and below 90 rpm, the sensitivity of the cost function increases. The platform heights that minimize the cost function are the lower and upper limits for 60 and 120 rpm, respectively. Thus the platform height variable interacts with pedaling rate, requiring a compromise in platform height adjustment. The compromise height depends on the individual’s preferred pedaling rate range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.