Abstract

The changes in fuel metabolism during fast and exercise were compared to the tissue total CoA levels in mice maintained on pantothenate-deficient and pantothenate-supplemented (control) diets. In nonexercised mice maintained on a pantothenate-deficient diet for 65 to 105 days, the total CoA levels of many tissues were significantly lower than in controls (liver 18%, kidney 23%, spleen 21%, heart 38%, and leg skeletal muscle 66%). However, no differences in total CoA levels in brain or epididymal fat pads were observed. During a 48-hour fast, the total CoA levels increased in the heart and liver of both pantothenate-deficient and control mice (heart 32 and 19%, respectively; liver 39 and 45%, respectively), but the level of total CoA remained lower in the deficient mice. Liver glycogen levels were 17% lower in deficient mice than in controls and liver ketone bodies were 17% higher in pantothenate deficient mice than in controls. Separate groups of mice on deficient and supplemented diets were trained to run to exhaustion. Compared to trained mice on pantothenate-supplemented diets, the trained panthothenate-deficient mice had lower running times until exhaustion, lower body weights, lower liver and muscle glycogen content (even after rest), and elevated liver ketone bodies both during rest and after running. In summary, the pantothenate-deficient mice were unable to maintain normal glycogen stores, but had a normal ketogenic response to fast and exercise in spite of the lower levels of liver total CoA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call