Abstract

The effect of medium motion on sound propagation in the ocean is investigated. In a moving fluid, the sound propagation is described by a system of seven linear partial differential equations for seven unknown elements of a sound wave. These are the sound pressure, the particle oscillation velocity in a sound wave as well as the changes of medium density, its entropy, and concentration of the salt caused by passage of a sound wave. In the case of stratified moving medium, the point source field is represented in the form of a sum of quasinormal waves. If the ocean perturbed by a current is weakly inhomogeneous along the horizontal direction, the modification of the well-known method of horizontal rays/vertical modes is used. The "effective" sound speed for the model of stratified ocean is introduced. It allows the qualitative estimation of the medium motion effect on sound propagation taking into account the deformation of the initial sound speed profile. A sequence of direct numerical simulations of sound propagation problems has been carried out for the Gulf Stream models. It is shown that a large-scale current may alter the nature of guided wave sound propagation. For example, a current may lead to noticeable strengthening of a near surface waveguide. It results in smoothed field pattern and significant illumination of the shadow zones. Taking account of the medium inhomogeneity along the horizontal direction leads to the shift of the shadow zones and the illuminated domains relative to the source. If a sound path crosses the Gulf Stream ring, the medium motion effect on sound propagation may be ignored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call