Abstract

BackgroundNutrition plays a vital role in shaping the intestinal microbiome. However, many hospitalized children undergo periods of fasting during medical treatment. Changes to the small intestinal microbiota in early life in the setting of enteral deprivation have not been well described. ObjectiveThe aim of this study was to investigate the impact of enteral deprivation on the small intestinal mucosal microbiome and to identify factors that shape this interaction in infancy. MethodsIntestinal biopsies were collected from proximal (fed) and distal (unfed) small bowel at the time of ostomy closure in children with a small intestinal enterostomy. Mucosal and luminal microbiome comparisons were performed including β-diversity and differential abundance and correlations with clinical factors were analyzed. Host proteomics were compared between fed and unfed samples and correlated with microbiome parameters. Finally, microbial results were validated in another cohort of pediatric patients. ResultsSamples from 13 children (median age 84 d) were collected. Mucosal microbiome communities in the fed and unfed segments were strikingly similar [paired UniFrac distance (β-diversity)], whereas luminal effluent differed significantly from fed samples (PERMANOVA, P = 0.003). Multivariate analysis revealed patient as the strongest predictor of the UniFrac distance. Environmental variables did not influence the intrapatient microbial dissimilarity. Host proteomics were similar intrapatient (paired fed–unfed Euclidian distance) and showed a correlation with the UniFrac distance (Spearman rho = 0.71, P < 0.001). Specific proteins and functional clusters were significantly different between paired samples, including lipid metabolism and intracellular trafficking, whereas no difference was seen in innate immune proteins. The microbiome results were validated in a different cohort with similar characteristics. ConclusionWe found the host to be the most dominant factor in the structure of the early life small intestinal mucosal microbiome. Nutrient deprivation was associated with specific changes in the host proteome. Further research is needed to better understand this host–microbe–nutrition interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call