Abstract

Cycle sequence has an important effect on the performance of pressure swing adsorption (PSA) processes. Pressure equalization steps influence significantly the purity and recovery of product, and therefore, may be properly designed to improve the performance of PSA processes. Open literature lacks of a systematic study on the effect of cycle sequence design on the performance of a specific PSA process as a controlling parameter. In this work, the results of recent studies on different cycle schedule design strategies have been used as a basis for comparing various cycle schedules (proposed by the authors of this work) on the performance of a six-bed PSA process for hydrogen purification. Three different cycle sequences have been designed, the pressure equalization and idle steps consisting the main controlling parameters. Simulation results showed that designs with more pressure equalization steps result in higher product recovery and those with less pressure equalization steps result in higher product purity. The proper performance of a PSA process is a tradeoff between product recovery and product purity. In this view, a target function has been developed that enables us to lump the latter performance parameters into one function for comparing the performance of the different cycles employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.