Abstract

This study is aimed to investigate the effect of Ni precursor salts on the properties (textural, phase-structural, reducibility, and basicity), and catalytic performance of diatomite supported Ni-Mg catalyst in methanation of CO2. The NiMg/D-X catalysts derived from various nickel salts (X = S-sulfamate, N-nitrate or A-acetate) were synthesized by the precipitation-deposition (PD) method. The catalysts were characterized by N2-physisorption, XRD, TPR-H2, and TPD-CO2 techniques. The different catalytic activity (conversion) and selectivity, observed in CO2 methanation carried out under relatively mild conditions (atmospheric pressure; temperatures: 250-450 °C) are related and explained by the difference in textural properties, metallic Ni-crystallite size, reducibility, and basicity of studied catalysts. The results showed that catalyst derived from Ni-nitrate salt (NiMg/D-N) is more suitable for the preparation of efficient catalyst for CO2 methanation than its counterparts derived from sulfamate (NiMg/D-S) or acetate (NiMg/D-A) nickel salt. The NiMg/D-N catalyst showed the highest specific surface area and total basicity, and the best catalytic performance with CO2 conversion of 63.3 % and CH4 selectivity of 80.9 % at 450 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call