Abstract

Recently, ionic liquids (ILs) have received an increasing attention as lubricants owing to their intriguing properties such as tunable viscosity, high thermal stability, low emissions, nonflammability, and corrosion resistance. In this work, we investigate how the incorporation of octadecyltrichlorosilane (OTS) functionalized silica nanoparticles (NPs) in 1-butyl-3-methylimidazolium (trifluoromethysulfony)imide influences the tribological properties and rheological properties of IL under boundary lubrication and elastohydrodynamic conditions, respectively. It was found that the coefficient of friction was depended on the concentration of NPs in IL with a concave upward functional trend with a minimum at 0.05 wt.% for bare silica NPs and at 0.10 wt.% for OTS-functionalized silica NPs. For steel–steel sliding contact, the presence of functionalized NPs in IL at the optimum concentration decreased the coefficient of friction by 37% compared to IL and 17% compared to IL with bare silica NPs. While IL with bare NPs demonstrated a shear thinning behavior for all concentrations, IL with functionalized NPs showed a Newtonian behavior at low concentrations and shear thinning behavior at high concentrations. Overall, this study provides new insights into the antifriction and antiwear additives for lubrication systems involving ILs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.