Abstract
This work presents a retrospective analysis of long-term trends in loading of forms of nitrogen (N) from the Metropolitan Syracuse Wastewater Treatment Plant (Metro), N concentrations in the receiving urban lake (Onondaga Lake, New York), and related water quality status for the period from 1972 to 2007. The history of the evolution of treatment and discharge at Metro, as it affected N loading, is reviewed and forms the basis for identification of five regimes during which unifying conditions of loading and in-lake conditions prevailed. Changes in industrial waste inputs have complicated the effects of upgrades in treatment at Metro from primary (until 1978) to advanced (starting in 2004). Current N loading from Metro is approximately 35% lower than the peak levels observed in the late 1980s to late 1990s, but the areal rate to the lake remains extremely high (approximately 97 g/m(2).y), representing approximately 75% of the overall N load. Implementation of year-round nitrification treatment has resulted in transformation of the composition of the N load from Metro from ammonia (T-NH3) to nitrate (NO3(-)) dominance. High N concentrations have prevailed in the upper waters of the lake throughout the study period with averages of total N ranging from 2.6 to 4.3 mg/L for the five regimes. Total N levels and partitioning among the forms in the lake generally have tracked Metro loading conditions for the five regimes. The effects of Metro loading on seasonal in-lake patterns are demonstrated to be modified by both hydrologic inputs from tributaries and in-lake operation of biochemical processes. Resolution of these effects is supported by application of both empirical and dynamic mass balance models. Water quality problems related to high concentrations of forms of N are documented, including (1) augmentation of dissolved oxygen depletion during fall mixing from in-lake nitrification events, enabled by high T-NH3 levels; (2) violations of ammonia toxicity limits; and (3) violations of nitrite toxicity standards. These problems were either greatly ameliorated or eliminated by Metro's most recent treatment upgrades. Prevailing conditions are considered in a management context, including (1) likelihood of exceedances of toxicity limits in the future and (2) potential role of elevated nitrate levels in preventing mobilization of methyl mercury from the lake's sediments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have