Abstract

AbstractMultilayer patterns can lead to temperature non-uniformity and undesirable levels of thermal stress in silicon wafers during rapid thermal processing (RTP). Thermal stress can, in turn, cause problems such as photolithography overlay errors and degraded device performance through plastic deformation. In this work, the temperature and stress fields in patterned wafers are simulated using detailed finite-element based reactor transport models coupled with electromagnetic theory for predicting radiative properties of multilayers. The temperature distributions are then used to predict the stress fields in the wafer and the onset of plastic deformation. Results are presented for two generic two-dimensional axi-symmetric reactors employing single and double side illumination. The effect of patterns and processing parameters are explored, and strategies for avoiding pattern induced plastic deformation are evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.