Abstract

Breaking the recalcitrant structure of native crystalline cellulose is an energy demanding rate liming step in the production of glucose from cellulosic biomass. Mix-milling of lignocellulosic substrates (with P2O5) dramatically increased glucose yield. In this work, the changes of physicochemical characteristics (morphology, structure, degree of polymerization (DP), solubility) of cellulose during mix-milling (with P2O5) are correlated with glucose yield in the subsequent chemical hydrolysis process. The mix-milling enables highly efficient breakdown of cellulose I crystalline to smaller amorphous particles with low DP, which is recrystallized into cellulose II structure after water-wetting. As a result, the mix-milled cellulose (MMC) shows higher hydrolysis reactivity than that of single-milled cellulose (SMC). The results showed that small particle size, low DP, higher solubility and cellulose II content are correlated with the hydrolysis reactivity of cellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call