Abstract

Abstract The strengthening of monsoonal southerlies over East Asia is associated with the westward intensification of the North Pacific subtropical high. Previous work has shown that the seasonal-mean position and strength of subtropical highs are affected by tropical and subtropical diabatic heating. Here it is shown that the synoptic-time-scale strengthening of southerlies over eastern China is dynamically tied to extratropical eddy activity. Composite analysis based on strong southerly wind events highlights an antecedent baroclinic wave train propagating southeastward into eastern China from extratropical central Asia. This wave train generates quasigeostrophic ascent over eastern China that is associated with heavy precipitation. The anomalously cold upper-tropospheric conditions associated with the wave train decrease static stability throughout the lower and middle troposphere in eastern China, while low-level moistening enhances equivalent potential temperature. It is proposed that the resulting reductions in dry and moist static stability intensify the eddy-induced precipitating ascent. These results illustrate how East Asian monsoon circulation and precipitation can be enhanced by the interaction of midlatitude baroclinic waves with the moist subtropical monsoon region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.