Abstract

The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations (March–September) using the NCEP GCM coupled with the Simplified Simple Biosphere Model (NCEP GCM/SSiB). After a control experiment with free-running soil moisture, two ensembles were performed in which the soil moisture over the vast region from the lower and middle reaches of the Yangtze River valley to North China (YRNC) was double and half that in the control, with the maximum less than the field capacity. The simulation results showed significant sensitivity of the East Asian summer monsoon to wet soil in YRNC. The wetter soil was associated with increased surface latent heat flux and reduced surface sensible heat flux. In turn, these changes resulted in a wetter and colder local land surface and reduced land–sea temperature gradients, corresponding to a weakened East Asian monsoon circulation in an anomalous anticyclone over southeastern China, and a strengthened East Asian trough southward over Northeast China. Consequently, less precipitation appeared over southeastern China and North China and more rainfall over Northeast China. The weakened monsoon circulation and strengthened East Asian trough was accompanied by the convergence of abnormal northerly and southerly flow over the Yangtze River valley, resulting in more rainfall in this region. In the drier soil experiments, less precipitation appeared over YRNC. The East Asian monsoon circulation seems to show little sensitivity to dry soil anomalies in NCEP GCM/SSiB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call