Abstract

The impact of microwave (MW) irradiation on protein folding, potentially inciting misfolding, was investigated by employing molecular dynamics (MD) simulations. Twenty-nine proteins were subjected to MD simulations under equilibrium (300 K) and MW conditions, where the rotational temperature was elevated to 700 K. The utilized replacement model captures the microwave effects of δ- and γ-relaxation processes (frequency range of ∼300 MHz to ∼20 GHz). The results disclosed that MW heating incited a shift toward more compact protein conformations, as indicated by decreased root-mean-square deviations, root-mean-square fluctuations, head-to-tail distances, and radii of gyration. This compaction was attributed to the intensification of intramolecular electrostatic interactions and hydrogen bonds within the protein caused by MW-destabilized hydrogen bonds between the protein and solvent. The solvent-accessible surface area (SASA), particularly that of polar amino-acid residues, shrank under MW conditions, corresponding to a reduced polarity of the water solvent. However, MW irradiation produced no significant alterations in protein secondary structures; hence, MW heating was observed to primarily affect the protein tertiary structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call