Abstract
A two-step finite element framework is presented that examines the effect of microscale thermal residual stress on the nanoindentation properties of fibre-reinforced composites. Firstly, micromechanical modelling is used to determine the residual stress state following thermal cooldown of a carbon-fibre composite material from cure temperature. A three-dimensional finite element nanoindentation model is then used to characterise the effects of residual stress on material properties determined by nanoindentation theory. The results show that the hardness of the matrix pockets decreases following thermal cooldown due to the existence of equibiaxial tensile residual stresses. The hardness property is also found to decrease for the majority of interfacial region stress states, while the microstructural areas where the effects of the residual stress are nullified are determined. The indentation modulus property is relatively insensitive to the microstructural residual stress, and thus is the recommended indentation property to be determined when carrying out a comparative parametric analysis between microstructural regions. The property changes are shown to be insensitive to any errors associated with contact area estimation using the Oliver and Pharr method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.