Abstract

The crystallization behavior of amorphous Fe84-X Si6B10MX (M=Nb, Zr, V, or Cu) alloys was examined using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) with the aim of clarifying the effect of additional M elements. The compositional dependence of the first crystallization temperatureT x1 increased in the order of Zr > Nb > V; however, the addition of 1 at. pct Cu caused a decrease inT x1. Such an effect of the M elements on the thermal stability of an amorphous phase was interpreted in terms of the difference in the atomic size. These alloys were composed of a mixed structure ofα-Fe and amorphous phases after aging for 3.6 ks in the first exothermic temperature range. The addition of more than 3 at. pct Nb or Zr significantly affected the morphology and grain size of theα-Fe phase. However, their particles possessed dendritic morphology with a grain size of 0.1 to 0.3 µm, when the Nb or Zr content was less than 2 at. pct. Further addition of these elements brought about the formation of sphericalα-Fe particles. The average grain size, for instance, was as small as 20 nm in the aged alloy containing 6 at. pct Nb, which shows that a remarkable grain refinement occurs with increasing Nb content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.