Abstract

Axial fatigue tests were performed on a 7075-T6 aluminum alloy in tension-compression and under superimposed positive mean stresses in dry air and in aqueous 0.5N NaCl solution. Both corrosive environments and positive mean stresses resulted in lower fatigue lives but no interaction between these variables was observed. Crack initiation in air occurred at electropolish pits at inclusion/alloy interfaces and propagated primarily in a Stage I (crystallographic) mode. Crack initiation in NaCl solutions occurred at heavily corroded regions surrounding non-metallic inclusions and propagated in a cleavage mode normal to the direction of applied stress. The relative number of cycles to crack initiation is shown to be a function of the magnitude of cyclic stress but not of mean stress. Similarly, the percentage of reduction in fatigue life due to corrosive environments is approximately constant at all mean stress levels. These data indicate that fatigue crack initiation is primarily related to mobile dislocations associated with cyclic deformation. Crack propagation on the other hand appears to be controlled by the maximum applied stress. A model for environment assisted cracking is presented which suggests that hydrogen induced cleavage is responsible for the degradation in fatigue properties of this alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.