Abstract

The effect of positive mean stress on the fatigue behavior of ferritic–pearlitic–bainitic steel has been studied. Specimens, produced from a massive forging, were cycled with two constant stress amplitudes and various positive mean stresses. Plastic strain amplitude and cyclic creep rate were measured during cyclic loading and the effect of the mean stress on saturated plastic strain amplitude and mean strain at half-life was established. Plastic strain amplitude is weakly dependent but creep strain increases with the mean stress exponentially. Fatigue life decreases with the mean stress for both stress amplitudes. The contributions of cyclic plastic strain and cyclic creep to the fatigue damage were evaluated and discussed in relation with the Manson-Coffin curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.