Abstract
AbstractThis study uses high‐energy X‐ray diffraction microscopy of SrTiO3 to identify correlations between grain boundary (GB) area changes and the motion direction of neighboring GBs to investigate interfacial energy minimization mechanisms during grain growth. The local GB area changes were measured near triple lines (TLs) to isolate the effects of neighboring GBs. These area changes were then correlated to the migration direction and curvature of the neighboring GBs present at the TL, providing an alternative metric associated with lateral expansion for describing GB migration. Additionally, this study extracted GB dihedral angles, which reflect the relative GB energy, to test whether low energy GBs replace high energy GBs (i.e., GB replacement mechanism) and, thus, can be used to predict a GB's migration direction. The majority of GBs did not exhibit local area changes reflective of the GB replacement mechanism, and the dihedral angles were not reliable indicators of GB motion. However, the expansion and shrinkage of GBs moving away from their center of curvature was more often consistent with the grain boundary replacement mechanism. These results suggest that growth for certain GB configurations is governed by relative energy differences while others are governed by curvature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have