Abstract
Layered soot analysis is explored as a potential indicator of gasoline in a fire. Current techniques lack the ability to analyze layered soot samples without the destruction of the layered information. Laser-induced thermal desorption (LITD) coupled with Fourier transform mass spectrometry (FTMS) is developed as a method for analyzing soot samples. Samples of soot on glass from the free combustion of gasoline are collected and analyzed using LITD-FTMS, and the effect of power density on the resulting chemical profile is reported. At higher power densities, a distribution of low m/z products is observed. At lower power densities, the products observed shift to higher molecular weights, with peaks attributable to the tropyllium ion, naphthalene, and pyrene. Results at low power densities suggest that LITD-FTMS is a viable method for the analysis of soot, with potential for use with layered soot samples. Peaks potentially useful for fuel differentiation of gasoline are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.