Abstract

ABSTRACTSelective laser melting is an advanced manufacturing process which can control the microstructure evolution and mechanical properties of as-manufactured products via various processing parameters. In this study, the porosity/relative density, surface quality, microstructure and mechanical properties were investigated on the selective laser melted Ti-6Al-4V alloy specimens fabricated with a wide range of laser energy inputs. It was found that the microstructure of selected laser melted Ti-6Al-4V alloys is typical of acicular martensites α′. Quantitative analysis reveals that the relative density, martensitic lath size and microhardness increase with the laser energy input. The surface quality is also substantially affected by the energy input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.