Abstract

BackgroundWith an increasing prevalence of osteoporosis, physicians have to optimize treatment of relevant vertebral compression fractures, which have significant impact on the quality of life in the elder population. Retrospective clinical studies suggest that kyphoplasty, despite being a procedure with promising potential, may be related to an increased fracture risk of the adjacent untreated vertebrae. MethodsA bio-realistic model of a lumbar spine is introduced to determine the morbidity of cemented augmentation. The model was verified and validated for the purpose of the study and subjected to a dynamic finite element analysis. Anisotropic bone properties and solid ligamentous tissue were considered along with α time varying loading scenario. FindingsThe yielded results merit high clinical interest. Bi-pedicular filling stimulated a symmetrically developing stress field, thus comparing favourably to uni-pedicular augmentation which resulted in a non-uniform loading of the spine segment. An enslavement of the load transfer was also found to both patient bone mineral density and reinforcement–nucleous pulpous superimposition. InterpretationThe investigation presented refined insight into the dynamic biomechanical response of a reinforced spine segment. The increase in the calculated occurring stresses was considered as non-critical in most cases, suggesting that prevalent fractures are a symptomatic condition of osteoporosis rather than a sequel of efficiently preformed kyphoplasty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.