Abstract

BackgroundCadaveric models are sometimes used to test the effect of manual techniques. We have not found any studies comparing the effect of tibiotarsal joint distraction on cadaveric models versus live models for clinical use. The aim was to compare the effect on tibiotarsal joint distraction movement when applying three force magnitudes of tibiotarsal axial traction technique force between a cadaveric model and volunteers. In addition, to compare the magnitude of force applied between the cadaveric model and volunteers. Finally, to assess the reliability of applying the same magnitude of force in three magnitudes of tibiotarsal axial traction force. MethodsA cross-sectional comparative study was conducted. Sixty ankle joints were in open-packed position and three magnitudes of tibiotarsal axial traction technique force were applied. Tibiotarsal joint distraction movement was measured with ultrasound. FindingsNo differences were found in applied force or tibiotarsal joint distraction between volunteers and cadavers in each magnitude of force (p > 0.05). The application of the technique showed moderate reliability for detecting low forces in both models. For medium and high force, it showed good reliability in the in vitro model and excellent reliability in the live model. InterpretationThe amount of distraction produced in the tibiotarsal joint was similar in volunteers and cadavers. The cadaveric model is a valid model for testing and investigating orthopaedic manual therapy techniques. The force applied was similar in the two models. Medium and high force detection showed good reliability, while low force showed moderate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.