Abstract

In this paper, alkali ion (Li+ Na+ K+ and Rb+)-doped Y2O3:Yb3+/Ho3+ up conversion films were prepared using the sol–gel method. The structures of the films were studied by using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy. A series of high-quality thin films with good crystallization were prepared. For all samples, two emission bands were observed: green emission at 539 (550) nm and red emission at 664 nm, which can be attributed to 5F4 (5S2)→5I7 and 5F5→5I8, respectively. The green emission is dominant, and the red emission is extremely weak. The effect of each alkali-ion dopant on the emission and color adjustment of samples was investigated. The green emission intensity is increased by a factor of 6.33 (Li), 2.03 (Na), 4.82 (K) and 1.92 (Rb) with increasing alkali-ion doping concentration, and red emission is increased by a factor of 7.80 (Li), 1.92 (Na), 4.78 (K) and 1.90 (Rb). The extreme value appears earlier with increasing ion radius. Li+ doping boosts luminescence in three ways, and the other alkali ions affect the light emission in two ways. Li+ doping and K+ doping can be used to adjust the color coordinates towards the 539 nm and 550 nm directions, respectively. Na+ and Rb+ doping can enhance emission with a stable color. This means that each alkali ion is a suitable choice as a color-regulating ion and can play a role in the regulation of luminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.