Abstract

The rate of hexose uptake by Chlorella is reduced by uncouplers such as carbonyl cyanide p-trifluoromethoxyphenyl hydrazone or dinitrophenol even before concentration equilibrium is reached. The addition of uncouplers changes the membrane potential and the intracellular pH. The membrane potential does not influence the initial velocity of net sugar uptake, whereas manipulation of the cell pH by means of dimethyloxazolidinedione or by butyric acid uncovered a dramatic influence of cell pH on the rate of hexose uptake: at pH values of 7.5—6.8 maximal rate of uptake is observed but at more acid pH a strong inhibition takes place with virtually total blockage of uptake at pH 6.1. The decrease of cell pH to 6.1 in the presence of carbonyl cyanide p-trifluoromethoxyphenyl hydrazone could therefore account for the decrease in hexose transport rate. It was shown that the intracellular pH as such determines the rate of uptake and not the pH difference between inside and outside; the transport rate did not correlate with ΔpH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call