Abstract

Infection of chicken fibroblasts with avian erythroblastosis virus (AEV) strain ES4 or with avian myelocytomatosis virus strain MC29 leads to a rapid morphological transformation of most cells. AEV-transformed fibroblasts are similar to Rous sarcoma virus (RSV)-transformed fibroblasts in that they exhibit microvilli at their surface, show a disappearance of actin cables, are agglutinable by lectins, and show a decrease in LETS protein and an increase in the rate of hexose uptake. They also elicit slightly increased levels of cell-associated proteolytic activity, but show no increase in the fibrinolytic activity of the harvest fluids. In addition, as shown previously, they are capable of anchorage-independent growth and of sarcoma induction. In contrast, MC29-transformed fibroblasts express a different pattern of transformation parameters. They are similar to both RSV- and AEV-transformed fibroblasts in that they are morphologically transformed, show a disappearance of actin cables and are agglutinable by lectins. They also elicit surface alterations which consist of bleb-like protrusions rather than of microvilli, and are capable of anchorage-independent growth. They are strikingly different from RSV- and AEV-transformed cells, however, in that they express normal levels of LETS protein and elicit no increase in the rate of hexose uptake or in proteolytic activity. They are not sarcomagenic although they show an accelerated growth rate in culture. In conjunction with the finding that MC29 and AEV do not contain sequences related to the fibroblast-transforming src gene of RSV, these results raise the possibility that MC29 and perhaps also AEV transform fibroblasts by a mechanism different from RSV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.