Abstract

In gas turbine engines, film cooling holes are often fed by an internal crossflow, with flow normal to the direction of the external flow around the airfoil. Many experimental studies have used a quiescent plenum to feed model film cooling holes and thus do not account for the effects of internal crossflow. In this study, an experimental flat plate facility was constructed to study the effects of internal crossflow on a row of cylindrical compound angle film cooling holes. There are relatively few studies available in literature that focus on the effects of crossflow on film cooling performance, with no studies examining the effects of internal crossflow on film cooling with round, compound angled holes. A crossflow channel allowed for coolant to flow alternately in either direction perpendicular to the mainstream flow. Experimental conditions were scaled to match realistic turbine engine conditions at low speeds. Cylindrical compound angle film cooling holes were operated at blowing ratios ranging from 0.5 to 2.0 and at a density ratio (DR) of 1.5. The results from the crossflow experiments were compared to a baseline plenum-fed configuration. This study showed that significantly greater adiabatic effectiveness was achieved for crossflow counter to the direction of coolant injection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call