Abstract

Methane dry reforming reaction (DRM) can convert CO2 and CH4, two kinds of greenhouse gases with very stable chemical properties, to produce syngas, which can be used to synthesize valuable industrial products. Nickel-based catalysts have been widely used in DRM because of their low cost and good catalytic activity. However, nickel application is limited by such as high-temperature metal sintering, carbon deposition and catalyst poisoning, which restricts the industrial application in DRM reaction. Compared with single metal nickel, the selective doping of multi metals and supports shows higher catalytic activity and anti poisoning tolerance due to changing the chemical and structural properties of the catalyst by enhancing the alloy effect and the force between metal and support. This paper mainly reviews the catalysts with anti-coking, anti-sintering and anti-sulfur poisoning by tuning the metal-metal interaction and metal-support interaction (MSI) in DRM. The modification strategies in interfacial engineering and structure-performance relationship are discussed, and the existing difficulties and future development of Ni-based catalysts are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.