Abstract

While including amorphous solid dispersion (ASD) in tablet formulations is increasingly common, tablets containing high ASD loading are associated with slow disintegration, which presents a challenge to control pill burden for less potent compounds. We use a model ASD, composed of a hydrophobic drug with copovidone and a non-ionic surfactant, to explore formulation options that can prevent slow disintegration. In addition to the ASD loading, the pH of the disintegration medium and the inclusion of inorganic salts in the tablet also have an impact on the tablet disintegration time. Certain kosmotropic salts, when added in the formulation, can significantly accelerate tablet disintegration, though the rank order in their effectiveness does not exactly follow the Hofmeister series at pH1.8. The particle size and dissolution rate of the salt can contribute to its overall effectiveness. We provided a mechanistic explanation of the disintegration process: fast-dissolving kosmotropic salt results in a concentrated salt solution inside the restrained tablet matrix, thus inhibiting the dissolution of copovidone and preventing polymer gelling which is the main cause leading the slow disintegration. The outcome of this study has enabled the design of a higher ASD loading platform formulation for copovidone based ASD. Graphical Abstract MicroCT aids the mechanistic understanding of the role of inorganic salt in the tablet disintegration of amorphous solid dispersion based formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.