Abstract
Amorphous solid dispersion (ASD) has become an attractive strategy to enhance solubility and bioavailability of poorly water-soluble drugs. To facilitate oral administration, ASDs are commonly incorporated into tablets. Disintegration and drug release from ASD tablets are thus critical for achieving the inherent solubility advantage of amorphous drugs. In this work, the impact of polymer type, ASD loading in tablet and polymer-drug ratio in ASD on disintegration and drug release of ASD tablets was systematically studied. Two hydrophilic polymers PVPVA and HPMC and one relatively hydrophobic polymer HPMCAS were evaluated. Dissolution testing was performed, and disintegration time was recorded during dissolution testing. As ASD loading increased, tablet disintegration time increased for all three polymer-based ASD tablets, and this effect was more pronounced for hydrophilic polymer-based ASD tablets. As polymer-drug ratio increased, tablet disintegration time increased for hydrophilic polymer-based ASD tablets, however, it remained short and largely unchanged for HPMCAS-based ASD tablets. Consequently, at high ASD loadings or high polymer-drug ratios, HPMCAS-based ASD tablets showed faster drug release than PVPVA- or HPMC-based ASD tablets. These results were attributed to the differences between polymer hydrophilicities and viscosities of polymer aqueous solutions. This work is valuable for understanding the disintegration and drug release of ASD tablets and provides insight to ASD composition selection from downstream tablet formulation perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.