Abstract

Simple SummaryAchieving optimum fertility is the ultimate goal of keeping gander flock in commercial geese farming. Being seasonal breeders, geese exhibit poor reproductive efficiency. Inhibin (INH) immunization has improved reproductive parameters in some mammalian species but remained obscure in birds, especially geese. The present study aimed to check the effect of INH immunization on testicular histoarchitecture of Yangzhou ganders. Results illustrated that INH immunization disrupted seminiferous epithelium, germ cells development, lowered efficiency of spermatogenesis, and caused apoptosis in seminiferous tubules of Yangzhou ganders.The current study investigated the effect of inhibin immunization on germ cell numbers (spermatogonia, spermatocytes, round, and elongated spermatids), seminiferous tubules (ST) diameter, Johnsen’s score, epithelial height (μm), luminal tubular diameter (μm), and number of ST per field (ST/field) of Yangzhou goose ganders. Histological evaluation showed apoptosis and regression of testes after inhibin (INH) immunization, with a concomitantly marked reduction in the round and elongated spermatids in the experiment (INH) group compared to the control group. The diameter of seminiferous tubules (ST) and epithelial height (EH) were positively correlated at 181, 200, and 227 days of age. In comparison, luminal tubular diameter (LD) was negatively correlated on day 227 to ST diameter and epithelial height. On day 227, many seminiferous tubules per field (ST/field) were negatively correlated to ST diameter, EH, and LD. INH immunization elevated ST diameter, EH, and LD, while Johnsen’s score and number of ST/field had reciprocal expression. In conclusion, the concomitant effect of INH immunization and seasonality in breeding regressed germ cells and damaged spermatogenesis in seminiferous epithelium Yangzhou ganders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.