Abstract

The genetic mechanisms underlying the relationship of individual heterozygosity (IndHet) with heterosis and homeostasis are not fully understood. Such an understanding, however, would have enormous value as it could be used to identify trees better adapted to environmental stress. Dendrochronology data, in particular the individual average radial increment growth of wood measured as the average tree ring width (AvTRW) and the variance of tree ring width (VarTRW) were used as proxies for heterosis (growth rate measured as AvTRW) and homeostasis (stability of the radial growth of individual trees measured as VarTRW), respectively. These traits were then used to test the hypothesis that IndHet can be used to predict heterosis and homeostasis of individual trees. Wood core and needle samples were collected from 100 trees of Siberian larch (Larix sibirica Ledeb.) across two populations located in Eastern Siberia. DNA samples were obtained from the needles of each individual tree and genotyped for eight highly polymorphic microsatellite loci. Then mean IndHet calculated based on the genotypes of eight loci for each tree was correlated with the statistical characteristics of the measured radial growth (AvTRW and VarTRW) and the individual standardized chronologies. The analysis did not reveal significant relationships between the studied parameters. In order to account for the strong dependence of the radial growth on tree age the age curves were examined. An original approach was employed to sort trees into groups based on the distance between these age curves. No relationship was found between these groups and the groups formed based on heterozygosity. However, further work with more genetic markers and increased sample sizes is needed to test this novel approach for estimating heterosis and homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.