Abstract

Textile wastewater has a complex composition characterized by high dye content and chemical oxygen demand. Therefore, textile wastewaters have serious environmental impacts, such as aesthetic degradation, and carcinogenic properties. Treatment and the recovery of textile wastewater are important due to their high volume and toxicity. The effects of peroxidase enzyme immobilized on magnetic chitosan-clay beads of synthetic textile wastewater were investigated in a batch reactor. System performance was determined by chemical oxygen demand (COD) and color. The batch reactor was operated in three different pH (5, 7, 10), temperatures (25, 35, 45 °C), and reaction times (0-5-10-20-30 min.) with synthetic textile wastewater. As a result, COD and color removal efficiencies were determined as 44% and 56%, respectively, corresponding effluent concentrations are 1442 mg/L, 450 Pt-Co. The results of this study show that using the enzyme immobilization process is an effective method to remove color and COD concentration from textile wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call