Abstract
AbstractPickering emulsions are potential industrial scale alternatives to surfactant‐based emulsions. The stability of Pickering emulsions depends on the physicochemical nature of the liquid–particle interface and the hydrodynamic conditions of the production process. This article investigates the effect of hydrodynamic conditions on the drop size of concentrated Pickering emulsions in baffled stirred tanks. Oil in water emulsions composed of silicon oil, water, and hydrophilic glass beads as stabilizing particles were produced. Two impellers were used at different sizes: Rushton turbine (RT) and pitched blade turbine. The effects of power per mass, Reynolds number, tip speed, and Weber number on the droplet sizes were studied. The energy dissipated around the impeller and the size of the impeller high shear zone were found to be critical to the emulsion droplet sizes. The breakup and droplet‐particle contact mechanism of the RT was found to be more favorable for the production of the Pickering emulsions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.