Abstract
Catch per unit effort (CPUE) is a widely used index of population abundance for informing stock assessments for the purpose of estimating population status and setting fishing policies. However, for CPUE to be an unbiased index, influences that are not related to population abundance (e.g., spatial variation in effort and temporal changes in gear efficiency) must be accounted for in analyses known as CPUE standardization. In longline fisheries, one important factor that can affect CPUE is the spacing between hooks (‘spacing effect’), which influences effective effort and has largely been ignored in previous analyses. Here, we use the Pacific halibut (Hippoglossus stenolepis) long-line fishery as a case study to explore the spacing effect. Both commercial and experimental (fishery-independent) data with hook spacing, and a survey-based CPUE series, are available for this fishery. It thus provides a unique opportunity to explore the effect of hook spacing and its effect on CPUE trends. We quantify this effect using non-parametric and parametric relationships inside a spatially-explicit (geospatial) CPUE standardization model for commercial data, and non-linear mixed-effects model for experimental data. We found a clear non-linear spacing effect (i.e., hooks were less effective the closer they were), but accounting for space had a larger effect on CPUE trends than accounting for hook spacing. For this stock, it is likely the effect of hook spacing on CPUE was minimal due to little variation in average hook spacing over time. Regardless, historical and future trends in hook spacing can have important effects on longline CPUE standardization, highlighting the value of collecting this information. Accounting for hook spacing effects in other fisheries may improve estimates of trends in relative abundance and lead to better management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have