Abstract

PurposeConsidering that a meet between high-speed trains can generate aerodynamic loads, this study aims to investigate the effect of high-speed train meet on wheel wear at different speeds to provide a more accurate wheel wear model and a new idea for reducing wheel wear.Design/methodology/approachThe train speed was set at 250, 300, 350 and 400 km/h separately, and a vehicle system dynamics model was constructed using the parameters of an actual high-speed train on a line. The aerodynamic forces arising from constant-speed train meet were then applied as additional excitation. Semi-Hertzian theory and Kalker’s simplified theory were used to solve the wheel/rail contact problems. The wheel wear was calculated using Archard wear model. The effect of train meet on wheel wear was analyzed for the whole train, different cars and different axles.FindingsAccording to the results, all wheels show a wear increase in the case of one train meet, compared to the case of no train meet. At 250, 300, 350 and 400 km/h, the total wheel wear increases by 4.45%, 4.91%, 7.57% and 5.71%, respectively, over the entire operational period. The change in speed has a greater impact on wheel wear increase in the head and tail cars than in the middle car. Moreover, the average wear increase in front-axle wheels is 1.04–2.09 times that in rear-axle wheels on the same bogie.Practical implicationsThe results will help to analyze wheel wear more accurately and provide theoretical guidance for wheel repair and maintenance from the perspective of high-speed train meet.Originality/valueAt present, there is a lot of focus on the impact of high-speed train meet on the dynamic performance of vehicles. However, little research is available on the influence of train meet on wheel wear. In this study, a vehicle dynamics model was constructed and the aerodynamic forces generated during high-speed train meet were applied as additional excitation. The effect of train meet on wheel wear was analyzed for the whole train, different cars and different axles. The proposed method can provide a more accurate basis for wear prediction and wheel repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.