Abstract

PurposeThis study aims to investigate the effect of time-varying passenger flow on the wheel wear of metro vehicles to provide a more accurate model for predicting wheel wear and a new idea for reducing wheel wear.Design/methodology/approachSectional passage flow data were collected from an operational metro line. A wheel wear simulation based on time-varying passenger flow was performed via the SIMPACK software to obtain the worn wheel profile and wear distribution. The simulation involves the following models: vehicle system dynamics model, wheel-track rolling contact model, wheel wear model and variable load application model. Later, the simulation results were compared with those obtained under the traditional constant load condition and the measured wear data.FindingsFor different distances traveled by the metro vehicle, the simulated wheel profile and wear distribution under the variable load remained closer to the measurements than those obtained under the constant load. As the distance traveled increased, the depth and position of maximum wear and wear growth rate under the variable load tended to approach the corresponding measured values. In contrast, the simulation results under the constant load differed greatly from the measured values. This suggests that the model accuracy under the variable load was significantly improved and the simulation results can offer a more accurate basis for wear prediction.Practical implicationsThese results will help to predict wheel wear more accurately and provide a new idea for simulating wheel wear of metro vehicles. At the same time, measures for reducing wheel wear were discussed from the perspective of passenger flow changes.Originality/valueExisting research on the wheel wear of metro vehicles is mainly based on the constant load condition, which is quite different from the variable load condition where the passenger flow in real vehicles varies over time. A method of simulating wheel wear based on time-varying load is proposed in this paper. The proposed method shows a great improvement in simulation accuracy compared to traditional methods and can provide a more accurate basis for wear prediction and wheel repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.