Abstract
This work presents a joint experimental and numerical study of global characteristics and mixing behavior of underexpanded methane jets at high-pressure conditions in a Constant Volume Chamber. Injection pressures of 200, 250, and 300 bar and pressure ratios of 4, 5, 6, 8, and 10 at each of those pressures have been investigated. Tracer LIF with acetone as tracer has been applied to experimentally quantify the mixing of methane and quiescent air. In order to exploit the symmetry of the configuration, accompanying simulations have been carried out in Reynolds-Averaged Navier-Stokes framework with the k – w SST turbulence model and real-gas modelling based on the Soave-Redlich-Kwong Equation of State has been employed to account for high-pressure corrections in thermodynamic and caloric properties. The experiments confirm the hyperbolic decay of axial fuel concentration and the Gaussian shape of traverse concentration profiles in the self-similar region of the jets, while simulation results match well with experimentally determined fuel concentration fields. It is found that scaling laws proposed in literature for steady-state jet propagation can qualitatively interpret the effect of injection variations on jet tip penetration and volume. Increasing pressure ratio at fixed injection pressure leads to the formation of slightly richer jets, with slightly smaller mass percentage in the range of air-to-fuel ratios most favorable to autoignition. By contrast, increasing pressure ratio at fixed chamber pressure leads to virtually identical Probability Distribution Functions of local air-to-fuel ratios and the same is observed when employing a fixed pressure ratio at higher pressure levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.