Abstract

AbstractBlood-side resistance to oxygen transport in extracorporeal membrane blood oxygenators (MBO) depends on fluid mechanics governing the laminar flow in very narrow channels, particularly the hemodynamics controlling the cell free layer (CFL) built-up at solid/blood interfaces. The CFL thickness constitutes a barrier to oxygen transport from the membrane towards the erythrocytes. Interposing hemicylindrical CFL disruptors in animal blood flows inside rectangular microchannels, surrogate systems of MBO mimicking their hemodynamics, proved to be effective in reducing (ca. 20%) such thickness (desirable for MBO to increase oxygen transport rates to the erythrocytes). The blockage ratio (non-dimensional measure of the disruptor penetration into the flow) increase is also effective in reducing CFL thickness (ca. 10–20%), but at the cost of risking clot formation (undesirable for MBO) for disruptors with penetration lengths larger than their radius, due to large residence times of erythrocytes inside a low-velocity CFL formed at the disruptor/wall edge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.