Abstract

The human body's posture control is a complex system of organs and mechanisms which controls the body's centre of gravity (COG) over its base of support (BOS). Computerised Dynamic Posturography (CDP) allows for the quantitative and objective assessment of the sensory and motor components of the body's posture control system as well as of the integration and adaptation mechanisms in the central nervous system. The aim of this study was to assess the relationships between the body's height and BMI on CDP results in a group of young healthy women without any clinical symptoms of balance disorders. It was found that the MS depended significantly on the height and BMI of the subjects as well as on the SOT conditions. As the height and BMI increased the MS value decreased. The postural response latency (LC) in the MCT statistically significantly depended only on height and showed a positive correlation. The postural response latency increased with height. The postural response amplitude for both right and left lower limbs significantly depended on height and BMI, but only for the backward movement of the platform. The response amplitude for all platform translations under all MCT conditions increased with height and BMI. The body's resultant imbalance caused by the platform perturbations in the ADT was greater in shorter people and those with a lower BMI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call