Abstract
Purpose Patellofemoral pain syndrome is a common orthopedic trauma among runners. It is unclear whether patellofemoral joint stress (PFJS) is the highest (or lowest) when the knee joint flexion angle and extension moment are in combination under the condition that vastus medialis (VM) activation decreases. This study aimed to investigate the effects of changes in the PFJ contact area by decreasing the activation of the VM muscle on PFJS. Methods A PFJ sagittal model was used to quantify PFJ reaction force and PFJS. The PFJ model and mathematical modelling procedure were used to quantify PFJS based on previous studies. The simulation ranges were set to knee joint flexion angles of 10–45 degrees and extension moments of 0–240 Nm. PFJS was calculated for the normal condition (NC) and decrease condition (DC) in VM activation. Results When the knee joint angle and knee joint moment were at the maximum, the PFJS showed the maximum value under both conditions (NC; 14.9 N/cm2, DC; 16.4 N/cm2). PFJS was found to be higher in DC than that in NC for all simulation ranges. Conclusions Decreased VM activation may be involved in the mechanism of patellofemoral pain syndrome. In addition, the results of this study provide evidence that clinicians can enhance VM to relieve pain in patients with patellofemoral pain syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.